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Constraint-Based Design of
Optimal Transport Elements
A large aircraft contains thousands of transport elements, such as tubes, ducts, and
Their shape is subject to many constraints, some extrinsic (e.g., obstacle clearance
others intrinsic (e.g., legal bend angles). A key problem is to design a feasible route
is optimal (e.g., as short as possible). We present an algorithm specialized for m
tubing that allows the user to sketch a route using constraint objects. The user arra
the constraint objects and the system fills in an optimal tube. Trade-offs can be exp
rapidly, in terms of quantities of direct engineering interest. This effectively automa
tedious manual design process, saving time and money and producing superior de
The algorithm has been implemented and tested in a production environment.1
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1 Introduction
An airliner such as a Boeing 777 has many thousands oftrans-

port elements, including metal tubes appearing in systems such
hydraulics, pneumatics, fuels, air conditioning, drainage, ins
mentation, and fire suppression.~There are many transport ele
ments of other kinds, such as wires, ducts, and hoses, but
paper will focus on metal tubes.!

Transport element design is difficult because, among other
sons, the shape of a transport element is generally subject to
tiple conflicting constraints. This is especially true for metal tub
as we will make clear below. In short, to go from pointA to point
B, an arbitrary curve will not suffice. Instead, a valid tube must
a member of a very particular class of curves.

Extrinsic constraintsusually arise from the engineering app
cation at hand. The most common types are stay-in or stay
zones. In contrast,intrinsic constraintsusually apply to the shape
of the transport element itself and arise from manufacturing
assembly considerations. For example, a tube cannot be ben
yond a certain angle without exceeding the mechanical limits
the tube-bending machine, or a hose cannot sustain greater t
certain curvature without kinking. Constraints are not always
act limits, but may have apreferred value and anot-to-exceed
~NTE! value. There is an increasing penalty associated with
ues passing the preferred value and approaching the NTE v
For example, the preferred minimum bend angle might be 8
grees, with 4 degrees tolerated, but less than 4 degrees consi
infeasible. In addition to constraints, there are multiplecoststo be
minimized, such as weight~length! or flow resistance, andbenefits
~‘‘negative costs’’! to be maximized, such as compliance~to en-
sure ease of installation!. The overall goal is to minimize the cost
subject to the constraints.

Usually transport elements have low engineering priority. Th
must adapt continually to the demands of other disciplines.
example, a hydraulics designer might never request that a win
moved aft, but if the wing is moved aft because of overridi
structural or aerodynamic considerations, then hundreds of tu
must adapt accordingly. An automated approach, such as we
scribe below, could be of great benefit in such re-design scena

1.1 Related Work. Several researchers have addressed t
and pipe routing, e.g., Jain@1#, Mitsuta @2#, Zhu @3,4#, Bohle @5#,
Satyanarayana@6#, and Wangdahl@7#. Automatic routing capabili-
ties also appear in some commercial software products suc
@8#. These works generally follow this line: unobstructed spac
decomposed into discrete elements; the elements are treat

Contributed by the Computer Aided Product Development~CAPD! Committee
for publication in the JOURNAL OF COMPUTING AND INFORMATION SCIENCE IN
ENGINEERING. Manuscript received Sept. 2002; Revised Dec. 2002. Associate
tor: K. Lee and N. Patrikalakis

1Some aspects are patent-pending in the U.S.~#09/967,784! and other countries.
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nodes, and the transitions between them edges, in a graph
efficient path through the graph is found and the resulting chain
elements is used to derive the transport element shape. The r
ences above emphasize Manhattan-style~orthogonal! routes,
which are appropriate for industrial plants or ships, but not
aircraft, where space and weight considerations dictate sub
shapes. Furthermore, these works generally do not account in
tail for the strong constraints imposed by manufacturing p
cesses; no one to our knowledge has treated these at the lev
detail appropriate for automated tubing design in aircraft. Nev
theless, some aspects of Zhu@3# are very similar to our work~the
simplification of background geometry—they use ‘‘virtual sourc
and sinks’’—and abstract shape constraints, e.g., prohibiting
sign of the slope to change on a drainage pipe!.

Cagan and Szykman@9# use simulated annealing to synthesi
non-orthogonal routes for tubing in industrial plants and mecha
cal products. Their algorithm captures the inherently discrete
ture of bent metal tubes~detailed below!, and could in principle
deal with intrinsic ~manufacturing-based! constraints such as
minimum and maximum bend angles, and minimum straig
section lengths. It does not take into account explicitly the circu
arcs at bends, which are important to consider in the cram
environs of aircraft. Furthermore, the routes they demonstrate
relatively simple compared to what we address here~@9# demon-
strated two or three bends in 3-D, subject only to obstacle c
straints, whereas our system is aimed at ‘‘threading’’ a tu
through a complicated array of constraint objects, not all of wh
are simple obstacles!.

Conru and Cutkosky@10,11# use genetic algorithms to aid in th
design of cable harnesses. They not only find efficient pa
through free space, but they address the critical problem of re
ing the paths into physically realizable curves~i.e., satisfying a
minimum bend-radius constraint!. However, the only kinds of ex-
trinsic constraints they treat are obstacles, and their intrinsic c
straints are simpler than required in our setting.

There is a broad literature devoted to superficially related pr
lems such as VLSI layout, water systems, communication n
works, etc. Such research tends to focus on 2-D problems
strictly Manhattan paths. In general, the constraints involved
these areas are not relevant to aircraft tubing.

The field of mobile robot motion planning@12#, particularly
nonholonomicmotion planning, is directly related to our problem
since a tube is analogous to the path swept out by a sphe
mobile robot. A nonholonomic constraint is one that restricts
set of possible motions instantaneously, yet does not reduce
dimensionality of the configuration space. For example, a ca
subject to a nonholonomic steering constraint, for it cannot cha
its orientation without moving forward, but it canultimately as-
sume any position or orientation. Similarly, transport eleme
cannot be bent arbitrarily sharply, but must be ‘‘steered’’ throu

di-
2002 by ASME Transactions of the ASME
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space. It should be observed that a mobile robot may back u
necessary~e.g., when parallel parking! but tubes enjoy no such
freedom. Furthermore, tubes are typically obliged to turn with
fixedradius, through aminimumarc on each turn, and when a tur
is completed the tube must go straight for aminimumdistance.

Laumond@13# provides an excellent overview of nonholonom
motion planning. The field has deep connections to nonlinear
timal control@14#. Although it focuses on 2-D problems~whereas
our problem is 3-D!, nevertheless it usefully illuminates the ge
eral idea of planning in the face of nonholonomic constraints. T
approach introduced in@15# is most similar in spirit to our work.
The general program is:~1! find a collision-free path ignoring the
nonholonomic constraints;~2! subdivide the path recursively, re
placing each section with a valid nonholonomic approximati
until a collision-free path is obtained;~3! refine the resulting path
if necessary.~We derived our method independently.! The elastic
bandsmethod of Quinlan@16# also shares some aspects of o
work.

For many readers, the rubric of ‘‘routing’’ has a topologic
flavor and implies discrete decisions, e.g., to pass above not b
a certain obstacle, to the left not the right of another, throug
particular hole not another, and so on. We call such a set of d
sions agross route. We believe ‘‘routing’’ is practically a misno-
mer in our setting, since our method comes into play only afte
gross route been determined. Our methodrefinesa gross route into
a shape that is optimal, manufacturable, and pleasing to a hu
designer.

The chief differences between our method and previous w
may be summarized as follows: our method works in 3-D;
introduce specialconstraint objectsthat are adapted to the com
plex environment of aircraft; we treat tubing geometry in gre
detail ~taking rounded corners into account explicitly!; and, we
provide a means of automatically exploring trade-offs betwe
various designs.

1.2 Current CAD Approaches. In the early days of aircraft
design, tubes were designed by hand-bending model tubes ag
a wooden mockup. Nowadays tubes are usually designed e
tronically with a computer-aided design~CAD! system. Here we
describe how this is currently done. We introduce some impor
background and terminology first.

Geometry of Bent Metal Tubes.Geometrically, a transport el
ement is a 3-D curve, called acenterline, along which is swept a
cross-sectional shape~usually a circle!. Metal-tube centerlines be
long to a peculiar class of curves—alternating straight secti
and circular arcs—due to their manufacturing process: tubes
formed from straight pieces of stock by introducing a series
circular bends using a special tube-bending machine. A deta
description of the process may be found in@17# ~see also@18,19#!.
Essentially it consists of ‘‘shooting’’ out a length of straight stoc
bending it around a circular die, and rotating the stock around
longitudinal axis. This process may be repeated several times

The straight sections of a tube are subject to a minimum-len
~MINLEN! constraint because the tube-bending machine can
the tube only at straight sections. The bends are subject
minimum-angle~MINANG! constraint, since small bends are diffi
cult to produce~the tube may spring back elastically!. Bends are
also subject to a maximum-angle~MAXANG ! constraint, chiefly
because large bends are likely to cause the tube to collide with
tube-bending machine itself.~Placing an upper limit on the ben
angle is a mere heuristic; it cannot generally prevent such c
sions.! Usually all bends in a tube have the same radiusr, since
varying the radius from bend to bend requires a die change, w
is costly. The object of design is atube run, which consists of
several individual tubes connected in a series. The tube ru
usually conceived and designed as a whole, and later divided
sections for assembly. In practicer is relatively free to change
from section to section.~In this paper we assume it is constant!

Referring to Fig. 1, the ends of a tube are called theA-endand
Journal of Computing and Information Science in Engineering
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the B-end. The directionA-to-B is calleddownstreamandB-to-A
upstream. The ~imaginary! intersections NiPR3 of adjacent
straight sections are callednodes. The arcs with radiusr terminate
at tangentsT i

A andT i
B . The length of the straight section atA is

called thestandoff sA , and sB at B. The lengthl i of all other
straight sections is bounded below byl min . Bend anglesa i obey
amin<ai<amax. H j is a hardpoint ~e.g., a clamp!. The straight
section throughH j has orientation limits and must extend u
stream by at leastOj

A and downstream byOj
B ~to provide clear-

ance for installation or sliding!. Oj
A1Oj

B may be less thanl min .
The termroute denotes an ordered set of nodes (N1 , . . . ,Nn). A
centerlineis obtained from a route by interpolating straight se
tions and arcs. A swept disk of diameterD defines the final tube
shape. Typicallyl min'r'3D, amin'8°, andamax'120°.

Metal tubes are essentially rigid, so their shape must be sp
fied exactly. It is not sufficient, for example, to simply cut a rou
length of material and rely on a technician to adjust the shape
the factory floor.~In some cases, a small degree ofpreloading, or
elastic deformation, may be introduced during assembly, as w
following the gentle curve of a wing surface. Preloading a
stems from unavoidable variability in the fabrication proce
which Wei @17# treats in detail. We do not treat these issues in t
paper.!

Node-Based Design; the Linkage Viewpoint.The nodes and
the bend radius constitute a very compact shape representati
is so convenient that it is often used as a basis for design, w
can be problematic. For example, in Fig. 2 a minimum standoff
~MINOFF, typically'3D) of sA is needed atA. This is achieved by
placingN2 sufficiently far fromN1 . However, if the next down-
stream straight section is moved, as when passing from~1! to ~2!
in Fig. 2 with N2 fixed, thenMINOFF may be violated. This illus-
trates how it is not generally possible to simply design a tube
terms of nodes, and then blindly interpolate the arcs and stra
sections.

Current CAD systems provide several aids for designing tub
but they do not escape essentially node-based design. CATIA@20#,
for example, provides a ‘‘compass’’~a movable local coordinate

Fig. 1 Tubing geometry

Fig. 2 Nodes make poor control points
DECEMBER 2002, Vol. 2 Õ 303
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system! that can be positioned relative to the background geo
etry. The user draws a tube one section at a time, using the c
pass to guide each section. The system automatically check
manufacturing constraintsafter a new section is added.~Such lo-
cal, post hoccorrectness checking tends to prevail in CAD sy
tems, whereas our method represents a global, correc
construction approach.! The result is an inherently manua
incremental, and node-based process.

Some other forms of constraint management are available,
the user may specify that part of a tube should maintain a gi
separation from a background element~e.g.,@21#!. However, only
relatively simple constraints, involving a small number of nod
or straight sections, may be applied. Systems that work this
~notably @18#! essentially view a tube as a linkage made up
ball- and telescope-joints, as in Fig. 3, but one that responds
locally to user input or applied constraints. As we will show b
low, our method adjusts the entire linkage simultaneously.

Node Distribution. Current CAD systems regard thenode dis-
tribution ~the number of joints in the ‘‘linkage,’’ and their orderin
relative to external constraints such as obstacles or clamps! as a
fixed entity that the user must design explicitly. This viewpo
can be problematic. For example, in Fig. 4~A!, the bulkheads are
parallel, and the tube is straight. In~B! the top bulkhead has bee
rotated very slightly, and the tube consequently has a very s
bend, but the bend violates theMINANG constraint. The three-ben
configuration in ~C! is needed to accommodate the seemin
trivial change in the background geometry, since only by int
ducing ‘‘extra’’ bends can theMINANG constraint be satisfied~as-
suming no elastic deformation!. Evidently requiring the user to
design a fixed linkage beforehand can preclude automatic
design when the background changes. What is needed is a sy
that can automatically re-design the linkage.

1.3 Trade-Offs. Even with the CAD aids described abov
the tubing design process still relies heavily on trial and error. T
engineer designs the tube by manually manipulating the node
the constraints seem to preclude a satisfactory design, the
relaxes one or more constraints and starts over. The choic
which constraints to relax, and in what order, and by what amo
is typically based on intuition or experience.

The problem is that constraints tend to interact in inconven
ways. Setting one at its preferred value tends to drive the ot
toward their not-to-exceed~NTE! values. As with a radio button
pushing one down forces the others up, with no available set
in between. An in-between configuration may be what the
signer wants, but obtaining it by manipulating the geometry
plicitly can require excessive trial-and-error work. Our method
contrast, exposes in-between configurations directly by introd
ing ‘‘soft constraints.’’ A soft constraint assigns a cost to valu

Fig. 3 Linkage viewpoint

Fig. 4 A single node distribution may not be able to accom-
modate all changes in the background
304 Õ Vol. 2, DECEMBER 2002
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between the preferred and NTE values. The overall objective
cludes theseviolation costs. The user can explore trade-offs b
adjusting the weights, not the geometry. The geometry~potentially
even the node distribution! adjusts itself automatically.

One may ask, ‘‘What are the ‘correct’ weights for balancin
say,MINANG violations against flow resistance?’’ Such a questi
is not well posed. The best that can be done is to expose as m
of the Pareto setas possible~see Fig. 5!. This set contains the
efficientdesigns~those that cannot be perturbed without increa
ing some costs! @22#. The user must choose aparticular efficient
design, but with our method he can at least restrict his attentio
‘‘efficient design space.’’ In our opinion this is an important a
vance over current CAD capabilities.

2 Method

2.1 Overview. Our method providesconstraint objectsin
terms of which a designer can ‘‘sketch’’ a gross route. Constra
objects might be local in nature, such as stay-in or stay-out zo
or zones in which a given orientation is required. They may a
be global, enforcing, e.g., planarity, slope restrictions, and so
The user may also specify relationships between disparate par
the tube, so that, e.g., the orientation at a certain point matc
that at another point, without specifying the orientationper se.
The user chooses parameterized constraint objects from a ‘
ette’’ and places them in the environment, producing a sketch
the desired route. The system then fills in an optimal, manufac
able tube.

Constraint objects act assurrogatesfor real background geom
etry elements. This ‘‘surrogate background approach’’ allows~and
requires! the user to ‘‘mark up’’ the background with constrain
objects that stand in for real geometry. There are two reasons
this: First, background models generally have more detail~e.g.,
rivets, fillets, etc.! than is needed to drive the design of transp
elements and it is advantageous to suppress such detail fo
sake of computational efficiency. Second, the background ge
etry may not explicitly represent the constraints that the desig
knows are important. For example, the designer may know
when a transport element runs near a certain fixture, it should
so with a particular orientation and offset, but this knowledge
simply not represented in the background model.

2.2 Constraint-Object Types. It is convenient to define
three types of constraint objects:targets, section constraints, and
constraint relationships.

Before explaining all these types, it will be helpful to expla
hardpointsfirst. A hardpoint defines the position and orientatio
of a straight section of a tube, and typically represents the loca
of a clamp. Hardpoints are convenient design primitives: the u
can specify anA-end, aB-end, and a sequence of intermedia
hardpoints, and a CAD system can fill in the straight sections
arcs~if possible!.2 ~This is nearly equivalent to node-based desig
since the intersections of hardpoint-lines form nodes.! Even when
using only hardpoints, filling in the straight sections and arcsop-
timally ~e.g., with the shortest path! for an entire tube in the face
of MINANG, MAXANG , and MINLEN constraints is generally non

2A system at Boeing called KIRTS is capable of sophisticated hardpoint-ba
design; seeAcknowledgments.

Fig. 5 The Pareto set
Transactions of the ASME
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trivial. Subsections of a tube can interact, albeit weakly, acr
hardpoints via theMINLEN constraint, so the entire tube run mu
be considered as a whole.

A single hardpoint implies several ‘‘primitive’’ constraints an
costs. Figure 6 depicts a model of a hardpointH that clamps a
straight sectionNiNi 11 . H has a centerc, orientationn, preferred
upstream~downstream! offset Opref

A (Opref
B ), and not-to-exceed up

stream~downstream! offset.ONTE
A (ONTE

B ). H gives rise to severa
constraints:NiNi 11 must intersectc; the angle betweenNiNi 11

andn must be zero; and, the distance fromc to T i
B (T i

A) must not
fall below ONTE

A (ONTE
B ). ~These are ‘‘primitive’’ in that they are

conceived in terms of the simplest available geometric entitie
points, lines, etc.!. These can carry soft-constraint costs as w
Thus, even a simple hardpoint is a fairly complicated ‘‘bundle’’
‘‘macro’’ of constraints and cost functions.

Targets. Targetsmay be viewed as ‘‘generalized hardpoints
They serve as waypoints in a gross route. Figure 7 shows
commonly used targets.~A! is an A-end or B-end with a finite
angular tolerance.~B! is a rectangular region inside of which th
tube must lie parallel to the arrow.~H indicates theeventualloca-
tion of a hardpoint.! ~C! is a rectangular stay-in zone throug
which the tube must pass with angular limits indicated by the c
shape. It is different from~B! because the range of motion of th
hardpoint is substantially perpendicular, not parallel, to the t
direction.~D! is a 3-D stay-in zone~of which ~B! and~C! may be
viewed as special cases!. Targets such as~B!, ~C!, and ~D!, in
which a hardpoint is allowed to ‘‘slide’’ within an admissibl
zone, are calledsliding hardpoints. Such targets effectively let the
user say ‘‘Place a hardpointsomewherein this region, but defer
finding itsexact, optimallocation until later.’’ This reflects a gen
eral theme in our method, namely to reduce the user’s workl
by demanding the least specific input possible. Notice that~B! and
~D! require an extra parameter, besides the relevant node co
nates, to locateH.

If hardpoints were the only targets allowed, then a good n
distribution would follow trivially from only local considerations
the number of nodes between adjacent hardpoints is pred
mined by their relative configuration~in reasonable designs th
number must be 0, 1, or 2!. In contrast, with the ‘‘loose’’ targets o

Fig. 6 Model of a hardpoint

Fig. 7 Some available targets
Journal of Computing and Information Science in Engineering
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Fig. 7, the number of nodes between targets may vary accor
to theoverall tube shape~see Fig. 14 for an example!.

Figure 8 shows a more unusual target type. Each ‘‘sleeve’’ s
rounds a portion of an existing transport element. The new tra
port element is constrained to not approach the existing trans
element closer thanr inner, nor to be farther away thanr outer. This
allows the user to route a new tube ‘‘pseudo-parallel’’ to an ex
ing one.

Other targets are more abstract, e.g., an infinite ‘‘slab’’ of sp
in which the transport element must run parallel to a certain pla
but with no other restrictions. Not all targets need to have a ha
point associated with them. Each target explicitly influences
fixed number of nodes.

To gain an idea of the complexity of the primitive constrain
that a target~and constraint objects in general! can give rise to,
consider Fig. 9. It illustrates how a single target~in this case an
irregular hoop-shaped stay-in zone! gives rise to considerably
more primitive constraints and costs than a simple hardpo
These primitive constraints involve complicated expressions:
distanceOj

A between the hoop plane~defined byCj and normal
vector mj ) and the tangentT i

B is constrained above a not-to
exceed value, and carries a decreasing cost as it approach
preferred value. Given a bend radius ofr, Oj

A has the form

Oj
A52mj•S Ni1rniA12ni•ni 21

11ni•ni 21
2Cj D

where ni5(Ni 112Ni)/uNi 112Ni u. The soft constraint cost is
(Oj

A)2; similarly for (Oj
B)2. The expression for the distancedi

betweenedgei andCj involves a term accounting for the effectiv
elongation of the tube diameter due to its generally oblique re
tion to the plane. Thedi are constrained to be non-negative, kee
ing the tube inside the hoop; thedi

2 form soft-constraint costs. The
direction of penetration, characterized byg j andd j , is also con-
strained, and also contributes soft-constraint costs. Notice thain-
equalityconstraints play a strong role, in contrast to typical pa
metric CAD systems, which expose only equality constraints.

Section Constraints. These are so named because they ap
to the section of a tube between two targets. A section constr
may have an obvious geometrical manifestation~e.g. a stay-out
zone; see Fig. 15–18!, or it may be more abstract, imposing co

Fig. 8 Sleeves for pseudo-parallel routing

Fig. 9 A single high-level constraint implies many ‘‘primitive’’
constraints
DECEMBER 2002, Vol. 2 Õ 305
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straints on, or associating costs to, factors such as slope, ov
orientation, or planarity.~Slope constraints may be needed
avoid trapping moisture; planarity may be desirable because
nar designs can be used on either side of an airplane.! Since a
section constraint applies to everything between two targets,
since it is not knowna priori how many nodes there will be
between any two targets, it is therefore not knowna priori how
many nodes a given section constraint will affect. For exampl
stay-out zone might lie between anA-end and aB-end, and it may
be possible for the transport element to circumvent the stay
zone with only two bends, in which case the separation constra
that cause the desired stay-out behavior apply to three stra
sections and two arcs~i.e., to two nodes!. However, if more bends
are required, then the stay-out zone might affect more nodes

Constraint Relationships.These are ‘‘meta-constraints’’ tha
establish relationships between, or introduce new constraint
cost-functions of, two or more targets or section constraints~usu-
ally targets!. For example, it may be advantageous for a transp
element to penetrate a sequence of stay-in zones at thesame
angle, or with thesameoffset from the edges of the zones—
without specifying what that angle or offset should be. This ide
illustrated in Fig. 10. Another use for constraint relationships is
limit or regulate the distance between sliding hardpoints. The u
can place a sequence of sliding hardpoints~recall Fig. 7~D!! and
let the algorithm produce the best inter-hardpoint spacing. C
straint relationships can introduce an arbitrary degree of n
locality into the design problem.

2.3 Optimization Approach. A key aspect of our method is
automatically finding a suitablenode distribution~see §1.2!. We
take a heuristic approach to this problem, consisting of first fi
ing a ‘‘reference route’’ that likely resembles, in a rough sense
least, an optimal route, and then using this reference route
guide for estimating the final node distribution.

General Pattern; Overall Cost. The general pattern of ou
algorithm is to formulate a series of continuous sub-proble
each according to a particular trial node distribution. The indep
dent variables in each sub-problem are the node coordinates,
extra parameters determining the exact hardpoint locations~in
those targets for which the hardpoint location is adjustable!. Cor-
responding to each sub-problem, there is a continuous costf that
depends only on the continuous node positions, and an ov
cost F, which comes from additively augmentingf with some
functiong of the discrete node distribution. For example,g might
be the number of nodes~reflecting a desire to minimize the num
ber of bends explicitly!. Generally F5b1f 1b2g, where b1 ,
b2>0 are user-adjustable weights.

Other Viewpoints: Mixed-Variable Optimization.The problem
may be viewed as an instance ofmixed-variable optimization,
since some independent variables are discrete and others con
ous ~see@23# for other examples!. Our goal is to simultaneously
determine a node distribution~the discretenumber of nodes in
each inter-target gap! and the exact node positions~continuous
quantities!. Mixed-variable problems can sometimes be a
proached usingmixed-integer programming, in which the discrete
variables are relaxed to continuous variables that must take
integer values only at a final solution. A mixed-integer formu

Fig. 10 Constraint relationships may enforce similar condi-
tions at disparate locations
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tion could run along the following lines: Corresponding to ea
nodeNi there would be a vectorm i(x) of constraints describing
the MINANG/MAXANG conditions, and another vectors i(x) de-
scribing ‘‘no-bend conditions’’~collinearity!. A standard device
for ‘‘activating’’ or ‘‘deactivating’’ m i(x)<0 or s i(x)<0 is to
introduce variablesyi , zi and the modified constraint equations

m i~x!2Myi<0

s i~x!2Mzi<0

with yi , ziP$0,1%, yiÞzi , andM@1. Then one would apply, for
example, a branch-and-bound algorithm, as in@24#. We would
anticipate several problems: First, at each deactivated bend
constraint and objective functions are invariant with respect
translation of a node along the centerline, so the problem wo
be ill-conditioned in the continuous subspace. Second, the num
of continuous variables would be constant and large.~In our for-
mulation it varies as the solution progresses, and is kept as s
as possible.! Third, theMINLEN constraint would be extraordinar
ily cumbersome to implement, since it must take into acco
contiguous occurrences of the no-bend conditions.

Why Not a Straightforward Continuous Optimization?The fol-
lowing purely continuous program might seem reasonable:~1!
introduce an ‘‘overpopulation’’ of nodes;~2! optimize their loca-
tions continuously;~3! allow bends or straight sections to vanis
~or coalesce! as necessary. However, theMINANG andMINLEN con-
straints, which areessentialto the problem, foil such an approach
since theyexplicitly forbid any bends or straight sections fro
vanishing continuously. Thus no purely continuous optimizatio
method can solve the problem by itself. Discreteness, which
generally known to make optimization difficult, is an unavoidab
aspect of our problem.

Graph Search. It would be possible to decompose space d
cretely and apply graph search procedures such as Dijkstra’
gorithm or A* search~following the lines of the more conven
tional path planning literature; see §1.1!. Such apurely discrete
approach cannot provide exactness, which we consider an im
tant goal for very detailed tubing design. It can only provide
approximation whose precision accords with the fineness of
discretization.

2.4 Initial Guess, Easy Pass. With the above viewpoints as
background, we proceed to describe our optimization approac
detail.

Initial Guess. The first step is to find a ‘‘reference’’ route tha
likely captures the main features of the final route, i.e., it ‘‘hit
all the targets and obeys the extrinsic constraints, and thus ten
indicate the rough locations of large bends, small bends, long
short straight sections, etc. The order of the targets is determ
automatically, but the user can override this ordering if desired.
suggested in the ‘‘straightforward continuous’’ approach discus
above, we introduce a gross overpopulation of nodes through
initial guessprocedure: each pair of adjacent targets generate
guess of a small number of nodes between them~typically two,
but special configurations may give rise to one or zero!. Section
constraints may ‘‘sprinkle’’ additional nodes into their associat
inter-target gaps. For example, a stay-out zone between two h
points typically adds three extra nodes between those alread
troduced by the targets, to ensure enough degrees of freedo
circumvent the stay-out zone.

Figure 11 illustrates the initial-guess procedure. The node
black are guessed by nearby targets. Each black node occup
predetermined position relative to the two nearest targets, reg
less of other constraint objects. The white nodes arise from
stay-out zone. The initial guess is not necessarily feasible: no
for example, the stay-out violation in Fig. 11. Therefore it do
not necessarily provide a good indication of the eventual ove
Transactions of the ASME
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shape. Typically, the initial guess includes many more nodes
are eventually needed in an optimal route; hence the term ‘‘g
overpopulation.’’

Easy Pass. In this phase we optimize the continuous no
locations of the initial guess, relaxing the intrinsic constraintsMI-

NANG, MAXANG , and MINLEN, and using a greatly reduced ben
radius. The goal is simply to run a ‘‘thread’’ through all the targe
that obeys all the section constraints and constraint relationsh
and thereby provides a better indication of the eventual ove
shape. The resulting centerline is called theeasy pass. It is critical
to observe that if we attempted to thread an overpopulation
nodes enforcing theMINANG, MAXANG , and MINLEN constraints
then very likely either~a! no feasible configuration would exist, o
~b! the resulting route would be wildly different~i.e., containing
loops, etc.! from that obtained with a good node distributio
Therefore, a key point is to relax the intrinsic constraints dur
the easy pass optimization. Figure 12 illustrates the easy p
~The dotted lines and other annotations in Fig. 12 are explai
below.! Notice that even the easy pass is notguaranteedto suc-
ceed, as it is always possible to arrange the constraint objects
pathologically infeasible way regardless of the particular c
straint limits.

Salience Ranking. The nodes in the easy pass are ranked
salience, which is defined as the deviation of a node at the m
ment it appears as a breakpoint in a classical iterative endp
fitting algorithm~see@25#!. This generates a sequence of straig
line approximations to the easy-pass route (N1 , . . . ,Nn) as
follows: We find the nodeNi whose perpendicular deviationdNi

from the line L1n through N1 and Nn is greatest. The route is
broken at Ni to form two sub-routes (N1 , . . . ,Ni) and
(Ni , . . . ,Nn) with corresponding linesL1i andLin . This is done
recursively, halting when the sub-routes contain only two no
~seeU, V, andW in Fig. 12!. By this means each node is eve
tually assigned a saliencedNi

.

2.5 Choosing the Best Nodes from the Easy Pass.The
next two phases heuristically ‘‘filter’’ the easy pass nodes, ba

Fig. 11 Initial guess

Fig. 12 Salience ranking and easy pass
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on their saliences, in order to determine which ones form a g
node distribution.

Terminology: Given a routeR5(N1 , . . . ,Nn) with saliences
dN2

, . . . ,dNn21
~terminal nodes are never assigned a salienc!,

consider a routeSobtained by deleting some or all of the intern
nodesN2 , . . . ,Nn21 . A deleted node is said to bere-admittedto
S if it is inserted intoS in the same relative position that it had i
R. A node is re-admitted only if it has the greatest salience of
nodes that have not yet been re-admitted. Therefore, givenS cre-
ated fromR, a re-admissionoperation onSunambiguously adds a
predetermined node. Given a routeR, a node issuppressedby
deleting it. Some nodes inR may be declaredcritical ~see below!
and are never suppressed. A node is generally not suppresse
less it has the least salience of all nodes not yet suppressed. T
fore, given a routeR, a suppressionoperation onR unambigu-
ously deletes a predetermined node.

Re-admission on a routeS is defined only in the context o
some original routeR from which S was obtained by deleting
nodes. Suppression, in contrast, on any route is defined in term
just the route itself.

An optimized re-admissionoperation is a re-admission followe
by an attempt to optimize~continuously, using conventional opti
mization techniques! the node locations and the parameters t
determine the sliding hardpoints’ exact locations.~The continuous
optimization process is described below.! An optimized suppres-
sionoperation is a suppression followed by a similar optimizati
attempt. An optimized re-admission or optimized suppression
said to fail if no feasible point can be found, i.e., if the no
coordinates and other parameters cannot be adjusted in a con
ous sense to achieve feasibility. From a performance poin
view, the algorithm exploits the fact that conventional continuo
optimizers typically determine non-feasibility quickly.

Forward Pass with Look-Ahead.A forward passis executed
as follows: From the easy-pass routeE5(N1 , . . . ,Nn), nodes
N2 , . . . ,Nn21 are deleted to obtain the trivial trial route (N1 ,Nn).
An attempt is made to optimize the locations ofN1 andNn . With
high probability this optimization will fail, since the only route
that contain two nodes are those connecting two collinear e
fittings, which is a rare scenario. If it fails, optimized re
admissions are applied, in order of decreasingdNi

, until either~a!

a re-admission is successful, producing a routeF, or ~b! there are
no more nodes to re-admit. In case~b! complete failure is de-
clared. In case~a!, the overall cost is recorded asCF . It is advan-
tageous to ‘‘look ahead’’ to see whether adding nodes can prod
a significantly better route. Figure 13, for example, illustrates h
a four-bend~six-node! route may be superior~in terms of, say,
length! to a three-bend~five-node! route. Look-ahead consists o
further optimized re-admissions until one is successful or
nodes remain. The cost of the first feasible look-ahead routeF8 ~if
one exists! is recorded asCF8 . If CF8<(12u)CF , 0<u<1 ~so-
lutions are improving ‘‘quickly’’! then the resultG of the forward
pass is taken to beF8, with costCG5CF8 . OtherwiseG5F and
CG5CF . The parameteru ~typically 0.1! is essentially a
threshold on the rate of change of the overall cost with the num
of nodes~it effectively controls ‘‘coarseness’’: a final route wil
have fewer nodes according asu is large!. Look-ahead could be
extended beyond adding just a single node, but this has not pro
necessary. Notice that on the forward pass, the saliencesdNi

are
always taken from the easy pass.

Fig. 13 Potential benefit of look-ahead
DECEMBER 2002, Vol. 2 Õ 307
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Backward Pass. Frequently some nodes may be re-admitt
in the forward pass that are not strongly needed. This is relate
a phenomenon observed in certain regression schemes@26,27#,
where it is found effective to progressively add complexity to
model until a good fit is obtained, and then progressively red
the complexity until the fit worsens significantly. Analogously,
is often possible to delete a few nodes from the result of
forward pass without degrading the route significantly. This
flects the fact that~a! salience is merely an ordering heuristic, n
a perfect indicator of re-admission priority, and~b! after a node is
re-admitted, all nodes are adjusted by a continuous optimiza
so some nodes generally end up in different locations from th
they held in the easy-pass routeE.

A backward passis executed as follows: First, the saliencesdNi

are re-calculated onG. Optimized suppressions are applied toG,
in order of increasing salience, until one is successful or there
no more nodes to suppress. Each time an optimized suppre
fails, the node that was to be suppressed is declaredcritical. If an
optimized suppression succeeds, producing a routeB with cost
CB , and if CB<CG(11s), s>0 ~the solution does not degrad
‘‘too quickly’’ !, thenG is set toB, saliencesdNi

are re-calculated,
and the process recurses with the newG. Notice that in the back-
ward pass the saliences are continually re-calculated, where
the forward pass the saliences from the easy pass are reused
following refinement is effective: Upon failure of an optimize
suppression, the nodeNi is not immediately declared critical. In
stead, another form of look-ahead is applied, to address wha
call ‘‘pairwise criticality’’: a node might not be critical if the next
least salient nodeNj is also suppressed. More precisely, a rou
G8 is formed, equal toG with Ni deleted. An optimized suppres
sion is applied~on the next-most-salient nodeNj ) to G8, and if it
succeeds thenboth Ni and Nj are deleted. This idea could b
extended beyond two nodes, but this has not proved necessa

2.6 The Continuous Sub-problems. The forward-pass/
backward-pass procedure yields the final node distribution. D
ing those passes many different node distributions must be o
mized in a continuous sense. Figure 14 illustrates how differ
node distributions imply fundamentally different continuous su
problems. For these we use NPSOL@28#, a well-known
augmented-Lagrangian-based algorithm~Gill @29#!. NPSOL ex-
poses the following interface directly to the programmer:

min F~x! subject to

a l<C~x!<au

b l<Ax<bu (1)

g l<x<gu

wherea l , au are lower and upper bound vectors on the gene
nonlinear constraintsC; b l , bu are bounds for the linear con
straints represented by the matrixA; andg l , gu are simple bounds
on the independent variablesx. In the continuous sub-problemsx
consists of the node coordinates plus parameters that charac
non-node features~sliding-hardpoint locations! that are optimized
concomitantly, i.e.,

Fig. 14 Alternative node distributions
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x5~x1 ,y1 ,z1 , . . . ,xn ,yn ,zn ,p1 , . . . ,pm!

Herexi , yi , andzi correspond to nodeNi . Thep i locate sliding
hardpoints within their admissible zones~recall Fig. 7~D!!. Space
limitations prohibit writing out the full objective function explic
itly, even for the simplest case, but Fig. 9 and its associated
convey how complex it can be for even a single target. Ma
primitive quantities~analogous to those of Fig. 9 but adapted
course to the particular constraint objects in question! contribute
entries to theC(x) vector, rows to theA matrix, or members to the
simple-bounds list, according to their mathematical form. Ea
quantity may also contribute a cost component to the continu
objective function. Thus the continuous objective function is
weighted sum of ‘‘primary’’ costs such as length, pressure dr
stiffness, etc., and ‘‘secondary’’ costs due to soft-constraint vio
tions. The weights are user-adjustable~recall §1.3!!. Any subset of
costs can be combined so as to minimize the maximum of
elements. Such a subset is called a ‘‘minimax group,’’ and is
abled by the AUTOOPT software described below. For example, a
minimum bend angle costs can be combined as a minimax gr
which is then included as an additive cost component. This
have a startling effect, since all members of such a group will te
to seek the same maximum value. So far this capability has
been used enough to judge what situations it might be prefe
in.

Many of the cost functions involved do not satisfy certain co
mon requirements of optimizers~e.g., C2 continuity!. Stay-out
zones in particular involvedist(A,B) ~the minimum distance be
tween two point sets!, which is usually only singly differentiable
Such inadequacies prove inconsequential in practice.

Utilizing a New Optimization Software Architecture.Each
time a new node distribution is considered, the form of the cor
sponding continuous sub-problem generally changes drastic
This was illustrated in Fig. 14. Here we discuss the software
plications of this complication. In short, a large part of our code
devoted to setting up, at run-time, the complicated continu
sub-problems for the trial node distributions. The raw interface
Eq. ~1! is extremely hard to use for this directly. The essent
difficulty is that variables are named only by their indices in a
rays. This creates difficult bookkeeping problems when formu
ing new problems on the fly. To solve this problem we develop
a new object-oriented software package, called AUTOOPT, which
serves as a ‘‘wrapper’’ for any NPSOL-like optimizer. AUTOOPT

allows the programmer to create individual constraints and ob
tives in a dynamic, run-time manner, using an abstract namesp
The user can program his formulas using arbitrary variable nam
Formulas are assigned to objects, and can be mixed and mat
at will; AUTOOPT arranges and accesses them in the form a
order expected by the underlying optimizer. The key feature
AUTOOPT is an abstract namespace that can be programmatic
manipulated at run-time. This provides many of the advantage
mathematical programming languages such as AMPL or GAM
but rather than emphasizing human readability, AUTOOPT empha-
sizes machine manipulability. In this sense AUTOOPT is similar to
the commercial products@30,31# but is, in our opinion, more gen
eral than either.

3 Results
Figure 15 shows two tubes in an airliner wheel well. TubeA

circumvents various stay-out zones around structural elemen
also passes through two sliding hardpoints; the final hardp
positions were automatically chosen within the white-outlin
rectangular regions. The inter-hardpoint spacing can in genera
regulated~limited or equalized! by appropriate constraint relation
ships. TubeB obeys most of the same section constraints as t
A, but is guided in a ‘‘pseudo-parallel’’ route by the sleeve obje
surrounding tubeA.

Figure 16 illustrates how constraint objects, which are the
selves ‘‘macros’’ of primitive constraints, can in turn be combin
Transactions of the ASME
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Fig. 15 Pseudo-parallel tubes in a wheel well
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into larger macros. Three sliding hardpoints are arranged inU
shape to produce anexpansion loop~such loops are used to give
tube sufficient compliance to withstand installation or therm
stresses, vibration, etc.!. Figure 16 demonstrates how a tube c
‘‘re-design itself’’ in response to changes in the background
ometry~it shows the loop before and after the introduction of tw
stay-out zones!. Notice that the objective function could incorpo
rate an explicit probability of rejection due to insufficient comp
ance, as in Wei@17#.

Figure 17 shows a route through two rectangular hoops, eac
which has a large range of admissible angles~recall Fig. 7~C!!,
with two stay-out zones in between. Hoops are typically super
posed, as in this example, on stiffening webs or bulkheads
indicate regions of admissible penetration. Figure 17 also inclu
some stay-out zones protecting some of the background struc
Tube A penetrates stiffeners 1 and 2 at significantly differe
angles, with respect to their local coordinate systems~x1, y1 and
x2, y2!. The angles are indicated by the dotted linesA1 andA2.
TubeB, in contrast, is subject to all the same constraints as t
A, with an additionalconstraint relationship~§2.2! imposed,
namely that the incidence angles should be thesameat both pen-
etrations~without specifying the angleper se!, thus facilitating the
re-use of a clamp or bracket design. Observe that the des
behavior~seeB1 andB2! is obtained not merely by a continuou
adjustment, but by changing the node distribution~the ‘‘linkage
design,’’ §1.2! and this is done automatically.

Performance. Table 1 shows typical timings for the variou
algorithmic phases~§2! for a tube passing through a sliding har

Fig. 16 Expansion loop „A… before and „B… after imposition of
stay-out zones
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point and a hoop, and avoiding a stay-out zone~see Fig. 18!. ~All
results are with an SGI workstation.! Notice that infeasibility is
typically determined very quickly. The typical time to evaluate th
objective and all the constraints once is about 0.4 millisecon
~This dominates the continuous optimization time.! Longer tubes
currently take much more time; e.g., in Fig. 15 tubesA andB had
14 and 19 initial nodes, 9 and 14 final nodes, and took 71 and
seconds, respectively.~The typical time to evaluate the objectiv
and constraints was about 2.5 milliseconds.! The increase in time
stems not only from~a! the greater number of independent var
ables and extrinsic constraints, but~b! some of the continuous
sub-problems tend to be ill-conditioned, i.e., the continuous o
mizer is forced to search in a ‘‘valley’’~a local symmetry of the
objective with respect to some perturbations of the independ
variables!. Such regions tend to defeat many stopping criter
causing continuous optimizers to get ‘‘bogged down’’ in a rea
of diminishing returns.

There are many performance optimizations that we are plann
to implement but have not tried yet. We give a brief discussion
some of them here:~1! Regarding problem size, there are man
opportunities for eliminating variables~e.g., replacing equality

Fig. 17 Tube passing through two stiffening webs „A… with and
„B… without equal incidence angles

Fig. 18 A timing example „see Table 1 …
DECEMBER 2002, Vol. 2 Õ 309
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constraints with variable transformations!; ~2! There is a consid-
erable amount of sparseness~or locality! inherent in the problem
formulation, which we are not yet exploiting. For example,
should be possible to ‘‘factor’’ a large tube into aseriesof nearly
independent sub-tubes.~Recall from §2.2, for example, that th
interactions across hardpoints are weak.! These sub-tubes would
later be re-assembled and subjected to a final optimization to
tain a globally optimal solution;~3! It should be possible to add
regularizing, or symmetry-breaking, components to the objec
function, to improve the conditioning~and thus the convergenc
speed! of the more difficult continuous sub-problems;~4! It is
possible in principle to obtain all derivatives analytically, rath
than resorting to finite differences as we currently do;~5! There
are distinct opportunities for parallelization; in particular, althou
the phases described in §2.5 are largely sequential, we have
perimented with parallelizable adaptations of them, with prom
ing results.

Notice that a commonmodus operandiis to re-use a desirable
node distribution as a discrete base for exploring continu
trade-offs~i.e., changing the soft-constraint weights without r
calculating the node distribution!. This usually takes only a few
seconds per trade-off, even with the current un-optimized cod

4 Discussion and Future Work
As pointed out in §1.1, one class of nonholonomic motion pl

ners for mobile robotics uses a subdivision approach to transf
a holonomic ‘‘guess’’ into a feasible nonholonomic path. We o
serve that our algorithm shares this trait in spirit, but with
important difference: rather than trying to fit a nonholonomic s
tion locally, i.e., on each side of a breakpoint, we simply use
breakpoint as a guidepost for re-parameterization, and optimi
nonholonomic pathglobally at each subdivision. This means th
the nonholonomic solution for a given subdivision might lo
very different from the solution at subsequent subdivision.

Many researchers~e.g.,@14,32–34#! have studied optimal path
subject tocurvatureconstraints. This is very different from a con
straint on the bend angleper se, for, although nonholonomic plan
nerstendto produce paths that obeyMINANG for some unspecified
value, with tubing itmustbe obeyed. Tubing is the only domai
we are aware of that exhibits this unusual property.

Targets, i.e., constraint objects that a tubemustpenetrate~gen-
erally with a constrained orientation!, are a double-edged sword
On the one hand they provide an intuitive ‘‘visual language’’ w
which a designer can express the gross route of a tube, circ
venting the need for a high-level ‘‘router.’’ The human design
serves~and must serve! this role by laying out the targets unam
biguously. On the other hand targets bring the node-distribu
problem into full relief: In our experience, optimal, non
orthogonal routes that account for theMINANG, MAXANG , and
MINLEN constraints are relatively easily obtained when targets
not present, i.e., when the only extrinsic constraints are obsta
In particular, for a given number of nodes a good spatial distri

Table 1 Timing for the case of Fig. 18.

Phase
of
Algorithm

Number
of

Nodes

Continuous
Optimization

Result

Continuous
Optimization
Time ~sec.!

Initial guess 10 N/A ;0
Easy pass 10 Feasible 1.75
Forward 2 Infeasible 0.0028

9 3 Infeasible 0.0026
9 4 Infeasible 0.0025
9 5 Infeasible 0.0026
9 6 Infeasible 0.0026
9 7 Feasible* 0.51
9 8 Insignif. improvement 1.43

Backward 6 Infeasible 0.0051
*Best result. ~All other backward-pass phases infeasible, to
backward-pass time50.97 s; total run time54.67 s!
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tion of them often follows readily from a continuous optimizatio
process. But with targets, nodes generally cannot migrate thro
space freely, so the problem becomes inherently discrete.
issue is what motivated the development of the AUTOOPT pack-
age.~Notice that@9#, lacking targets, treats thenumberof bends
explicitly, but not theirdiscretedistribution relative to the envi-
ronment.!

In §2.3 we mentioned mixed-integer methods as a way of
tacking what is essentially a mixed-variable problem. Audet a
Dennis@23# treat mixed-variable programming more directly, an
there is a close relationship between@23# and our work: essen-
tially, we use a specially adapted version of theirsearchphase,
tailored to exploit the geometry of our problem domain. Howev
at each discrete configuration we solve the continuous s
problemcompletely, whereas@23# admits the possibility of aban
doning a given discrete configuration because progress there i
slow.

We observe that our method, when viewed as a mixed-varia
optimization process, takes a heuristic approach, essentiallyprun-
ing many discrete configurations based on high-level geome
considerations~§2.5!. Empirically, the heuristics we use seem
be very effective at selecting node distributions that are visu
appealing to human designers. Such aesthetic consideration
more important in real design scenarios than one might susp

Tube routes may be viewed as optimaltrajectories, as for
spacecraft. In this respect, our method shares some of the flav
the transcription approach described in Betts@35,36#. Although
the constraints that are peculiar to tubes do not normally show
in flight trajectories, nevertheless the methods of@35# could prob-
ably be applied to our continuous sub-problems. We note th
rocket moving with a constant speed, subject to consta
magnitude bursts from a sideways-pointing engine, with fin
coasting periods in between, will follow a path similar to a tube
The only treatment we are aware of for this scenario is@37#,
which deals with the trivial case of one arc followed by o
straight section.

For a given continuous sub-problem, one could regard the
sociated linkage~§1.2! as an actual physical mechanism. Co
functions would represent spring energies, and the exact c
straints would represent joint limits. The goal would be to nume
cally simulate the settling of the mechanism to equilibrium. Se
eral well-known commercial products could be brought to bear
this ~e.g., DADS and ADAMS!. We have not pursued this pro
gram, because only the equilibrium state is of interest~reaching it
via a physically realistic trajectory is not advantageous!.

Future Work. Future work will treat, among other subjects,~1!
the performance improvements discussed in §3;~2! incorporation
of other continuous optimizers besides NPSOL~we have experi-
mented with Boeing’s own OPTLIB package@38,39# but we do
not yet have sufficient data to report results!; ~3! refinement of the
graphical user interface and porting it to a popular system
CATIA or Pro/ENGINEER;~4! the problem of routing bundles o
clusters of tubes simultaneously~we have started work on this
problem but do not have results to report yet!; ~5! extension to
other transport element types such as wires, hoses, and cable~6!
use of robot-path-planning methods such as in@3,13# to produce a
better initial guess;3 and ~7! research on data-management pro
lems such as the robust association of constraint objects to b
ground geometry, and managing the order in which tubes are
erated. Ultimately, it should be possible to store only constra
objects, with centerlines being regenerated as needed.

We also plan to investigate the application of the general p
ciples and software architecture we have developed to new a
of automated design. Our preliminary investigations have focu
on welded-duct jig layout, assembly tool design, and the desig
brackets of various kinds.

Another area that we plan to investigate is the use of m

3This idea was suggested by J.-P. Laumond in a personal communication.

al
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versatile, subtly shaped stay-out zones. We are currently ex
menting withadaptively sampled distance fields~ADFs! @40# for
this purpose. An ADF is essentially a look-up table and interpo
tion scheme for rapidly computing the distance from any poin
the surface of an object. Thus, rather than ‘‘shielding’’ backgrou
objects with a pre-defined library of shapes~e.g., the rounded
boxes in Fig. 15!, we would instead build an ADF around them
Preliminary results suggest that this method can provide a m
better representation of the background shape, while still per
ting fast computation.

5 Conclusions
We have introduced a transport-element design method b

on an arsenal ofconstraint objectsthat capture the key aspects
transport element design, and have demonstrated their effec
ness in the domain of metal tubes. Our constraint-based appr
allows a designer to work at a high level of abstraction, and p
mits trade-offs to be made directly in the engineering parame
of interest. These advances speed up the design process, an
duce designs that are superior in terms of performance~e.g., lower
weight!. They can also help to streamline business processe
ensuring that manufacturing and other constraints are consist
satisfied early on, thus eliminating expensive rework. The met
dispenses with the view of tubes as fixed linkages that mus
redesigned by a human in order to supply enough degrees of
dom to accommodate changes in the surrounding structures.
opens up the possibility of automatic re-design when the ba
ground geometry changes, effectively enabling a new degre
automated collaboration between different design domains.
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